Projekte

Aktuelle Projekte

SFB 1436 - Z02 "Human imaging at meso-scale"
Laufzeit: 01.01.2021 bis 31.12.2028

Der SFB 1436 hat das Ziel, neuronale Ressourcen auf allen Größenskalen zu untersuchen durch einen interdisziplinären Ansatz, welcher funktionelle und strukturelle Eigenschaften von kortikalen und subkortikalen Schaltkreisen mit Verhalten und Leistungsfähigkeit in Zusammenhang bringt und Interventionen untersucht. Technologische Fortschritte im Bereich der in vivo Gehirnbildgebung des menschlichen Gehirns sowie der multimodalen Modellierung sollen eine Brücke zwischen Molekularen Studien an Tiermodellen und Verhaltensstudien an Versuchspersonen und Patienten bauen. Projekt Z02 des SFB 1436 wird Technologien entwickeln, testen und bereitstellen, welche mittels Ultrahochfeld-MRT neue Möglichkeiten schaffen indem sie (i) die geeigneten Messmethoden etablieren und beste Datenqualität sichern und (ii) komputationale Werkzeuge und Analysemethoden erforschen, um Hirnnetzwerke auf unterschiedlichen Skalen in einzelnen Individuen sowie in Gruppen zu modellieren.

Projekt im Forschungsportal ansehen

SFB-TRR 287 A2: 3D-Measurements in dense granular assemblies using hyperpolarised Magnetic Resonance Imaging
Laufzeit: 01.07.2024 bis 30.06.2028

Research areas
Biomedical Technology and Medical Physics (205-32)
Biomedical System Technology (407-06)

Due to the limited accessibility of the bulk material to direct detection methods, often only integral flow quantities can be measured at the inlet and outlet of packed bed reactors. The exact understanding of the processes inside these technical systems is, thus, just as difficult as the system design with regard to energy efficiency and product quality. Furthermore, predictions from simulations cannot be experimentally validated in detail. Therefore, in project A2 the three-dimensional (3D) velocity field of the gas flow will be first measured in the reference configuration of the CRC/TRR with spherical and complex shaped particles by means of hyperpolarised phase contrast magnetic resonance imaging (pc-MRI). Three-dimensional, temporally and spatially resolved flow maps of the entire gas volume will be generated. These flow field data are essential and form the basis for the further understanding of the homogeneous and heterogeneous chemical reaction rates in particle beds. Sensors or tracer particles, which in turn can perturb the flow and particle movement, are not required. Optical access is also not necessary and arbitrary geometries are possible. The high flexibility of pc-MRI allows adaptations of the measurement to the requirements, e.g. regarding the sample volume (up to about 40 x 40 x 40 cm in commercial MRI) and the spatial (approx. 1 millimetre) or temporal resolution (approx. 1/10 second). With established MRI methods, usually only liquids can be detected due to their favourable physical properties with regards to generation of magnetisation (also called spin polarisation) and its life-time (relaxation properties). In this project, the transition to gaseous media is made possible by the application of highly innovative hyperpolarisation techniques. With this, the comprehensive three-dimensional, quantitative measurement of gas flow fields in complex geometries of non-transparent particle beds will be possible for the first time. Therefore, in addition to hyperpolarisation of the gas, MRI flow measurement methods for hyperpolarised magnetisation must be established. In addition, the development of materials and measurement setups is required that support the use of hyperpolarised gases without interference with the high spin polarisation. A2 will, therefore, build a continuous flow Xenon hyperpolariser with sufficient flow and polarisation level for fast and accurate MRI detection of gas (WP 1), a Xe-coil for Xe-MRI (WP 2), select and characterise proper materials for building an MR-compatible reference experiment (WP 3), extend a table to MR system for Xe-capability (WP 4), develop 3D pc-MRI flow measurement method for the application in hyperpolarised gas systems (WP 5) and measure and process flow data from the reference configuration (WP 6) to be provided to the simulation projects and to be compared to the other experimental methodology.

Projekt im Forschungsportal ansehen

Universal Integrated Console for Ultra-High-Field Magnetic Resonance Imaging (UIC4UHFMRI)
Laufzeit: 01.01.2024 bis 31.12.2027

Die Ultrahochfeld-Magnetresonanztomographie ist eine fortschrittliche medizinische Bildgebungstechnologie und spielt eine wichtige Rolle in der Erforschung der Gehirnfunktion und Neurobiologie. Sie ermöglicht Wissenschaftlern, detaillierte Bilder des Gehirns zu erfassen und funktionelle Aktivitäten in Echtzeit zu verfolgen. Dies kann zu einem besseren Verständnis von Gehirnerkrankungen, kognitiven Prozessen und neurologischen Störungen beigetragen. Das technische Ziel dieses Projektes ist die Realisierung einer universellen integrierten Konsole für Hochfeld-MRT-Systeme. Die in diesem Projekt entwickelte MRT-Konsole übertrifft alle bisher kommerziell oder als Eigenbau verfügbaren Systeme und ermöglicht es der OVGU und damit dem Land Sachsen-Anhalt, die Leuchtturmaktivitäten im Bereich MRT und Neurowissenschaften in den kommenden Jahren auszubauen und zu sichern. Ferner bietet das Projekt eine exzellente Möglichkeit der Einbindung in die
Hightech-Strategie des Landes Sachsen-Anhalt mit der Ansiedlung von Konzernen der Halbleitertechnologie und Mikroelektronik. Mit UIC4UHFMRI wird die Toolchain vom Design bis zur Systemintegration moderner Halbleiterbauelemente an der OVGU etabliert.

Projekt im Forschungsportal ansehen

BB-DARS: Blut-Biomarker-DrAinage-Reserve-Score zur personalisierten Risikoabschätzung einer ARIA unter Aß-Immuntherapie
Laufzeit: 01.10.2024 bis 30.09.2026

Ziel ist es den Zusammenhang zwischen einer gestörten perivaskulären Drainage und dem Auftreten von Amyloid-related Imaging Abnormalities (ARIA) bei Alzheimer-Patienten unter Amyloid-β-Antikörpertherapie zu untersuchen. Dazu wird multimodal eine Kohorte untersucht. MRT-basierte Marker für Drainage werden mit dem Blutbild korreliert um unter Berücksichtigung des Lifestyles neue Biomarker zu identifizieren. Diese Biomarker hätten das Potenzial, als nicht-invasive Marker für eine gestörte Drainage zu dienen und somit die Risikostratifizierung von Patienten zu verbessern.

Projekt im Forschungsportal ansehen

A4IM - Affordable low-field MRI reference system
Laufzeit: 01.09.2023 bis 31.08.2026

Das Gesamtziel dieses Projekts besteht darin, innerhalb des EURAMET-Netzwerks kostengünstige, quelloffene Niederfeld-MRT-Systeme zu entwickeln, inklusive Hardwarekomponenten, Datenerfassung und Bildrekonstruktion, die reproduzierbar, vollständig dokumentiert und messtechnisch charakterisiert sind.
Die spezifischen Ziele des Projekts sind:
1. Entwurf, Entwicklung und Evaluierung mobiler (<300 kg), kostengünstiger (<50 k€) und vollständig reproduzierbarer Niederfeld-MRT-Referenzsysteme (statisches Hauptfeld B0 ≈ 50 mT), die für die Bildgebung des menschlichen Kopfes und der Extremitäten geeignet sind.
2. Entwicklung modellbasierter Bildrekonstruktionsverfahren unter Verwendung der Referenzsysteme in Ziel 1.
3. Bewertung der klinischen Eignung der entwickelten Niederfeld-MRT-Referenzsysteme durch standardisierte Tests, an denen klinische Radiologen teilnehmen, um die Bildgebungsleistung an verschiedenen Standorten zu beurteilen.
4. Ermöglichung der Translation der im Rahmen des Projekts entwickelten Technologie und Messinfrastruktur durch Anbieter (z. B. akkreditierte Labors, Gerätehersteller), normenentwickelnde Organisationen (z. B. IEC TC 62/SC 62B) und Endnutzer (z. B. die klinische Gemeinschaft).

Projekt im Forschungsportal ansehen

SFB 1315 ”Mechanisms and disturbances in memory consolidation: From synapses to systems”; B06: Connectivity dynamics related to memory consolidation in cortical layers and subcortical networks
Laufzeit: 01.07.2022 bis 30.06.2026

Unser Projekt untersucht, wie sich das funktionelle Zusammenspiel von an der Gedächtnisbildung beteiligten Hirnstrukturen während der Konsolidierung verändert und zu welchem Zeitpunkt Hirnplastizität im Zusammenhang mit Gedächtnisengrammen beobachtbar ist. Hierzu verwenden wir einen neuen 7T Connectome Scanner, der eine Abbildung funktioneller und struktureller Veränderungen mit bisher unerreichter Auflösung beim Menschen ermöglicht. Dies wird uns erlauben den Übergang von hippokampal-zentrierter zu kortiko-kortikaler funktioneller Konnektivität während der Gedächtniskonsolidierung mit schichtspezifischer Auflösung im Kortex abzubilden. Hirnplastische Veränderungen in sensorischen Arealen, die mit Gedächtnisengrammen zusammenhängen, können ebenfalls in schichtspezifischer Auflösung mittels Diffusionsbildgebung abgebildet werden. Durch die bisher unerreichte Auflösung unserer Bildgebungsverfahren hoffen wir einen Brückenschlag zwischen Tier- und Menschenforschung in der Gedächtniskonsolidierung zu ermöglichen. Weiterhin werden wir untersuchen ob Salienz und semantische Kongruenz von Gedächtnisepisoden, die maßgeblichen Modulatoren des Erfolges von Gedächtniskonsolidierung darstellen, die Stärke und zeitliche Dynamik funktioneller und struktureller Veränderungen während der Gedächtniskonsolidierung beeinflussen.

Projekt im Forschungsportal ansehen

Vaskuläre Resistenz und Resilienz bei ALS - eine 7T-MRT-Studie des Motorkortex
Laufzeit: 01.10.2022 bis 30.06.2026

Die Amyotrophe Lateralsklerose (ALS) ist eine rasch progrediente neuromuskuläre Erkrankung mit Degeneration der Pyramidenzellen des Motorkortex‘ (M1). Die Ursache der sporadischen Form der ALS ist unvollständig geklärt; die Behandlung der Erkrankung rein supportiv, kausale Therapieansätze fehlen. Obwohl viele der betroffenen Patienten innerhalb von 3 bis 5 Jahren nach Diagnosestellung an einer Insuffizienz der Atemmuskulatur versterben, sind Krankheitsverlauf und Prognose im Einzelfall äußerst heterogen. Dieses wird anhand individueller motorischer Phänotypen, langer Krankheitsverläufe oder einer möglichen Regredienz motorischer Funktionsverluste deutlich. Im vorgelegten Antrag hypothetisieren wir, dass dieser Heterogenität eine variable Gefäßversorgung des Motorkortex‘ zugrunde liegt, die einer M1-Pyramidenzelldegeneration („resistance“) oder deren motorischen Folgeerscheinungen („resilience“) entgegenwirkt. Zur Beantwortung der Fragestellung wird prospektiv eine selektierte ALS-Kohorte von 20 Patienten sowie 20 alters- und geschlechtsangepasste Kontrollprobanden mittels 7 Tesla Ultra-Hochfeld-Magnetresonanztomographie (MRT) unter Verwendung einer Angiographie (ToF-MRA) und anatomischer Sequenzen (MPRAGE) untersucht. Visuell werden zwei vaskuläre M1-Muster, jeweils separat für die Äste der A. cerebri anterior (medialer Motorkortex) und die der A. cerebri media (lateraler Motorkortex) unterschieden: singulär, d.h. eine M1-Versorgung durch die terminalen kortikalen kleinen Arterien eines Astes, oder dual, d.h. durch die terminalen kortikalen kleinen Arterien von zwei Ästen. Es wird angenommen, dass ein duales vaskuläres Muster aufgrund überlappender Perfusionsterritorien beider Äste einer Pyramidenzelldegeneration oder deren motorischen Folgeerscheinungen entgegenwirkt. Zur quantitativen Analyse wird das „vessel distance mapping“ angewandt, welches jedem Voxel die Distanz zu den untersuchten Arterien zuordnet, woraus sich eine Approximation der Perfusionsterritorien ableiten lässt. Anhand von Mediationsmodellen werden direkte Effekte von vaskulärem Muster und Perfusionsterritorien auf die Pyramidenzelldegeneration (erfasst anhand der M1-Kortexdicke) untersucht, und, inwiefern deren Schwere den Einfluss von vaskulärem Muster und Perfusionsterritorien auf die motorische Funktion (global und körperteilspezifisch) zum Zeitpunkt des Einschluss-MRTs und im Langzeitverlauf vermittelt. Vaskuläre Muster könnten als neue Variable die phänotypische Variabilität der ALS erklären helfen, die auch translational im klinischen Alltag als zusätzlicher Aspekt für eine individualisierte Patientenberatung bezüglich Krankheitsverlauf und Prognose heranziehbar wäre. Die zerebrale Vaskulatur stellt potentiell modifizierbares Gewebe dar, dessen Funktionalität sowohl medikamentös als auch anhand von Lebensführung beeinflusst werden kann. Ein „vaskulärer Therapieansatz“ könnte in dem Sinne zu vollkommen neuen Strategien in der Prävention und Behandlung der ALS führen.

Projekt im Forschungsportal ansehen

Gerätezentrum "Magdeburg UHF-MR" Core Facility
Laufzeit: 01.05.2023 bis 30.04.2026

Das Magdeburger UHF-MR Gerätezentrum wird in Europa einzigartige 7T-MRT-Technologie und -Methodik bereitstellen. Als erstes Zentrum in Europa wird das Magdeburger UHF-MR Gerätezentrum zwei 7T-MRT-Systeme für Menschen betreiben, ein hochmodernes 7T-MRT und ein 7T-"Connectome"-MRT mit beispielloser Gradientenleistung. Nutzer sind Wissenschaftler vor allem aus den Bereichen der Grundlagenforschung, der angewandten und klinischen Neurowissenschaften verschiedener Magdeburger Einrichtungen sowie externe Forscher.
Das Hauptziel ist, bestmögliche Infrastruktur, Messmethoden und Technologien zusammen mit professioneller Unterstützung für alle Bildgebungsforscher zu etablieren und bereitzustellen. Das Projekt gliedert sich in 5 Arbeitspakete:
- Entwicklung und Bereitstellung modernster Methodik
- Etablierung von Methoden zur Gewährleistung und Überwachung höchster Datenqualität
- Schulung und Unterstützung der Nutzer bei der Bildgebung
- Entwicklung und Bereitstellung von Werkzeugen zur Verwaltung digitaler Forschungsdaten
- Etablierung der Organisationsstruktur und der Verwaltungsverfahren
Die einzigartigen 7T-Hardwarekapazitäten und die in Magdeburg vorhandene einzigartige methodische Expertise und langjährige 7T-MRT-Erfahrung bilden die Grundlage für neue, hervorragende Forschungsmöglichkeiten mit einem Höchstmaß an Unterstützung und Service für die Nutzer.

Projekt im Forschungsportal ansehen

Zusammenarbeit auf dem Gebiet der physikalischen-technischen MR-Entwicklung, Kooperation mit SIEMENS Healthcare
Laufzeit: 01.12.2016 bis 31.12.2025

Die Erforschung, Entwicklung und klinische Erprobung neuer MR-Techniken zur Bildgebung und Spektroskopie erfordert eine enge Zusammenarbeit zwischen SIEMENS und physikalisch-technischen und klinischen Partnern und Anwendern. SIEMENS und die UNIVERSITÄT als Anwender sind daran interessiert, im Rahmen dieses Vertrages zusammenzuarbeiten.

Projekt im Forschungsportal ansehen

Forschungscampus STIMULATE 2. Förderphase - Teilvorhaben OvGU, Focus-Bereich: iMRI-Solutions - FKZ: 13GW0473A
Laufzeit: 01.10.2020 bis 30.09.2025

Vorhabengegenstand ist der Bereich der Onkologie, mit dem Fokus auf ablative Therapien und Bildführung mittels MRT und CT mit dem Ziel der kurativen Behandlung von malignen Erkrankungen.

Die Zielsetzung besteht darin, die bildgeführten Interventionen einfacher, schneller, kostengünstiger, schonender und kurativ zu machen, sodass sie in der breiten klinischen Routine Einzug halten. Dazu wurden drei wesentliche medizintechnische Herausforderungen identifiziert, die innerhalb von vier Leit- bzw. Querschnittsthemen - iMRI Solutions, iCT Solutions, Immunoprofiling und Computational Medicine - gelöst werden sollen.

  • Kurative Therapie: Heutzutage haben die Interventionen primär eine palliative Bedeutung. In Analogie zur vollständigen chirurgischen Entfernung bösartigen Gewebes (R0-Resektion) strebt STIMULATE die komplette Abtragung der Läsion (A0-Ablation) und damit die Heilung des Patienten an. Die anvisierten Zielorgane insbesondere Leber - aufgrund der komplexen Gefäßversorgung - sowie Lunge - aufgrund der Pneumothorax- bzw. Luftemboliegefahr - beinhalten erhebliche Herausforderungen bei der Planung und Durchführung bildgeführter ablativer Therapien.
  • Lokale und systemische Überwachung: Die heutigen ablativen Verfahren stellen rein mechanistische Ansätze dar. Im Querschnittsthema Immunoprofiling berücksichtigtSTIMULATE erstmals - in einem translationalen Ansatz der Grundlagenforschung - die lokalen und systemischen Wechselwirkungen verschiedener lokoregionaler Therapieverfahren zur Überwachung und Prognose der kurativen A0-Therapie.
  • Dedizierte Bildgebungssysteme: Gegenwärtig werden für Interventionen MRT- und CT-Geräte eingesetzt, welche für die Diagnostik optimiert wurden und nur durch behelfsmäßige Zusatzausstattungen im OP eingesetzt werden können. Mit der in STIMULATE vorhandenen Expertise im Bereich der Bildgebung wird angestrebt, in den Leitthemen iMRI-Solutions und iCT-Solutions, spezielle interventionelle Geräte zu erforschen.

Projekt im Forschungsportal ansehen

DZPG: Deutsches Zentrum für Psychische Gesundheit FKZ: BMBF 01EE2305D
Laufzeit: 01.07.2023 bis 30.06.2025

Die schwerwiegenden individuellen und gesamtgesellschaftlichen Folgen psychischer Erkrankungen sind Ausgangspunkt, und deren nachhaltige Beeinflussung das zentrale Ziel des Deutschen Zentrums für Psychische Gesundheit (DZPG). Das BMBF hat mit dem DZPG ein weiteres Gesundheitszentrum etabliert, das mit seinem Fokus auf translationale Gesundheitsforschung sicherstellen wird, dass innovative Präventions-, Diagnose- und Therapieverfahren für psychische Erkrankungen generiert und zeitnah in die Regelversorgung übersetzt werden. Darüber hinaus wird das DZPG Lösungen für inakzeptable gesellschaftliche Ungleichheiten in der Versorgung von Menschen mit psychischen Erkrankungen erarbeiten. Diese gibt es sowohl in der „horizontalen Perspektive“, so z.B. zwischen den ländlichen und städtischen Lebenswelten, als auch in „vertikalen Kontexten“ z.B. bezüglich vulnerabler Gruppen. Um diese Versorgungslücken in der Erwachsenenbevölkerung und bei Kindern und Jugendlichen zu schließen, wird das DZPG ein ambitioniertes translationales Forschungsprogramm auflegen, das die Förderung von psychischer Gesundheit und Resilienz in den Mittelpunkt stellen, die gesellschaftliche Wahrnehmung psychischer Erkrankungen verbessern und die durch psychische Erkrankungen verursachten Belastungen in den nächsten 15 Jahren reduzieren wird. Hauptpartner im DZPG sind die sechs Standorte Berlin/Potsdam, Bochum/Marburg, Halle/Jena/Magdeburg, Mannheim/Heidelberg/Ulm, München/Augsburg, Tübingen und die Repräsentanten des Zentrumsrates. Der Zentrumsrat ist der Zusammenschluss der Betroffenen und Angehörigen. Die übergreifenden Ziele des DZPG sind auch für den Standort Halle/Jena/Magdeburg maßgeblich, zudem folgende Institutionen zählen: Universitätsklinikum Jena (UKJ), Friedrich-Schiller-Universität Jena (FSU), Martin-Luther-Universität Halle-Wittenberg (MLU), Otto-von- Guericke-Universität Magdeburg (OvGU), Universitätsklinikum Magdeburg (UMMD), Leibniz-Institut für Neurobiologie Magdeburg (LIN).

Projekt im Forschungsportal ansehen

“Quantification of perivascular spaces in neuropsychiatric long-COVID/post-COVID (LC/PC) syndrome as a biomarker for persisting perivascular inflammation and disease trajectories (JE2/TP5)”
Laufzeit: 01.07.2023 bis 30.06.2025

Psychiatrische Symptome wie Müdigkeit, Depressionen und kognitive Beeinträchtigungen sind bei Patienten mit Long-COVID/Post-COVID (LC/PC) weit verbreitet. Von den Mechanismen der anhaltenden systemischen und intrazerebralen Entzündung, die als Ursache für LC/PC-Symptome vorgeschlagen werden, spricht einiges für die Hypothese der perivaskulären Entzündung: SARS-CoV-2 schädigt die zerebralen Mikrogefäße und behindert durch seine zerstörerische Wirkung auf das Endothel die Hirn „Clearance“. Vorläufige Ergebnisse zeigten eine signifikante Korrelation zwischen vergrößerten perivaskulären Räumen (EPVS) im Basalbereich und Müdigkeitssymptomen bei LC/PC-Patienten. Wir stellen die Hypothese auf, dass der Schweregrad der EPVS dynamisch mit der Entwicklung klinischer Symptome bei LC/PC verbunden sein könnte, und werden die EPVS-Dynamik longitudinal untersuchen, um EPVS-Belastung als Mediator für psychiatrische und kognitive Symptome zu testen.

Projekt im Forschungsportal ansehen

Abgeschlossene Projekte

Zubehörset für interventionelle Eingriffe mittels Magnetresonanztomographie
Laufzeit: 05.01.2023 bis 04.01.2025

Abstrakt

An accessory kit is provided for interventional procedures using a magnetic resonance imaging scanner. The accessory kit includes a patient support and an electrical connection adapter. The patient support has a first end proximal and a second end distal to the scanner. The distal end is configured to create a space to accommodate a clinician, such as narrowing of the distal end or at least one cutout on a side of the distal end. The electrical connection adapter interfaces with the scanner and a scanner table. The accessory kit is configured so that when the proximal end is extended into the scanner bore, the distal end extends outside the bore. The narrowed width and/or cutout(s) of the exposed distal end and the extended gap between the scanner and scanner table create space on at least one side of the patient support that a clinician may use to access a patient.

Projekt im Forschungsportal ansehen

Vascular resistance and resilience in ALS - an ultrahigh-resolution 7T MRI study of the motor cortex
Laufzeit: 01.10.2022 bis 30.09.2024

Die Amyotrophe Lateralsklerose (ALS) ist eine rasch progrediente neuromuskuläre Erkrankung mit Degeneration der Pyramidenzellen des Motorkortex‘ (M1). Die Ursache der sporadischen Form der ALS ist unvollständig geklärt; die Behandlung der Erkrankung rein supportiv, kausale Therapieansätze fehlen. Obwohl viele der betroffenen Patienten innerhalb von 3 bis 5 Jahren nach Diagnosestellung an einer Insuffizienz der Atemmuskulatur versterben, sind Krankheitsverlauf und Prognose im Einzelfall äußerst heterogen. Dieses wird anhand individueller motorischer Phänotypen, langer Krankheitsverläufe oder einer möglichen Regredienz motorischer Funktionsverluste deutlich. Im vorgelegten Antrag hypothetisieren wir, dass dieser Heterogenität eine variable Gefäßversorgung des Motorkortex‘ zugrunde liegt, die einer M1-Pyramidenzelldegeneration ("resistance") oder deren motorischen Folgeerscheinungen ("resilience") entgegenwirkt. Zur Beantwortung der Fragestellung wird prospektiv eine selektierte ALS-Kohorte von 20 Patienten sowie 20 alters- und geschlechtsangepasste Kontrollprobanden mittels 7 Tesla Ultra-Hochfeld-Magnetresonanztomographie (MRT) unter Verwendung einer Angiographie (ToF-MRA) und anatomischer Sequenzen (MPRAGE) untersucht. Visuell werden zwei vaskuläre M1-Muster, jeweils separat für die Äste der A. cerebri anterior (medialer Motorkortex) und die der A. cerebri media (lateraler Motorkortex) unterschieden: singulär, d.h. eine M1-Versorgung durch die terminalen kortikalen kleinen Arterien eines Astes, oder dual, d.h. durch die terminalen kortikalen kleinen Arterien von zwei Ästen. Es wird angenommen, dass ein duales vaskuläres Muster aufgrund überlappender Perfusionsterritorien beider Äste einer Pyramidenzelldegeneration oder deren motorischen Folgeerscheinungen entgegenwirkt. Zur quantitativen Analyse wird das "vessel distance mapping" angewandt, welches jedem Voxel die Distanz zu den untersuchten Arterien zuordnet, woraus sich eine Approximation der Perfusionsterritorien ableiten lässt. Anhand von Mediationsmodellen werden direkte Effekte von vaskulärem Muster und Perfusionsterritorien auf die Pyramidenzelldegeneration (erfasst anhand der M1-Kortexdicke) untersucht, und, inwiefern deren Schwere den Einfluss von vaskulärem Muster und Perfusionsterritorien auf die motorische Funktion (global und körperteilspezifisch) zum Zeitpunkt des Einschluss-MRTs und im Langzeitverlauf vermittelt. Vaskuläre Muster könnten als neue Variable die phänotypische Variabilität der ALS erklären helfen, die auch translational im klinischen Alltag als zusätzlicher Aspekt für eine individualisierte Patientenberatung bezüglich Krankheitsverlauf und Prognose heranziehbar wäre. Die zerebrale Vaskulatur stellt potentiell modifizierbares Gewebe dar, dessen Funktionalität sowohl medikamentös als auch anhand von Lebensführung beeinflusst werden kann. Ein "vaskulärer Therapieansatz" könnte in dem Sinne zu vollkommen neuen Strategien in der Prävention und Behandlung der ALS führen.

Projekt im Forschungsportal ansehen

SFB-TRR 287 A2: 3D-Measurements in dense granular assemblies using hyperpolarised Magnetic Resonance Imaging
Laufzeit: 01.07.2020 bis 30.06.2024

Research areas
Biomedical Technology and Medical Physics (205-32)
Biomedical System Technology (407-06)

Due to the limited accessibility of the bulk material to direct detection methods, often only integral flow quantities can be measured at the inlet and outlet of packed bed reactors. The exact understanding of the processes inside these technical systems is, thus, just as difficult as the system design with regard to energy efficiency and product quality. Furthermore, predictions from simulations cannot be experimentally validated in detail. Therefore, in project A2 the three-dimensional (3D) velocity field of the gas flow will be first measured in the reference configuration of the CRC/TRR with spherical and complex shaped particles by means of hyperpolarised phase contrast magnetic resonance imaging (pc-MRI). Three-dimensional, temporally and spatially resolved flow maps of the entire gas volume will be generated. These flow field data are essential and form the basis for the further understanding of the homogeneous and heterogeneous chemical reaction rates in particle beds. Sensors or tracer particles, which in turn can perturb the flow and particle movement, are not required. Optical access is also not necessary and arbitrary geometries are possible. The high flexibility of pc-MRI allows adaptations of the measurement to the requirements, e.g. regarding the sample volume (up to about 40 x 40 x 40 cm in commercial MRI) and the spatial (approx. 1 millimetre) or temporal resolution (approx. 1/10 second). With established MRI methods, usually only liquids can be detected due to their favourable physical properties with regards to generation of magnetisation (also called spin polarisation) and its life-time (relaxation properties). In this project, the transition to gaseous media is made possible by the application of highly innovative hyperpolarisation techniques. With this, the comprehensive three-dimensional, quantitative measurement of gas flow fields in complex geometries of non-transparent particle beds will be possible for the first time. Therefore, in addition to hyperpolarisation of the gas, MRI flow measurement methods for hyperpolarised magnetisation must be established. In addition, the development of materials and measurement setups is required that support the use of hyperpolarised gases without interference with the high spin polarisation. A2 will, therefore, build a continuous flow Xenon hyperpolariser with sufficient flow and polarisation level for fast and accurate MRI detection of gas (WP 1), a Xe-coil for Xe-MRI (WP 2), select and characterise proper materials for building an MR-compatible reference experiment (WP 3), extend a table to MR system for Xe-capability (WP 4), develop 3D pc-MRI flow measurement method for the application in hyperpolarised gas systems (WP 5) and measure and process flow data from the reference configuration (WP 6) to be provided to the simulation projects and to be compared to the other experimental methodology.

Projekt im Forschungsportal ansehen

7 Tesla Connectome Magnetresonanztomograph
Laufzeit: 01.02.2020 bis 31.03.2023

Ein 7 Tesla Magnetresonanztomograph (MRT) mit einzigartigem Leistungsvermögen, welches weit über das vorhandene 7 Tesla MRT hinausgeht, wird als Forschungsinfrastruktur in Magdeburg mit Hilfe des Forschungsprogrammes Sachsen-Anhalt Wissenschaft/Infrastruktur etabliert. Diese Forschungsinfrastruktur kombiniert die ultra-hohe Magnetfeldstärke und damit Sensitivität von 7 Tesla MRT mit den stärksten Bildgebungsgradienten ("Connectome Gradienten"), welche die Informationskodierung bewirken. Die Gradienten werden mindestens die dreifache Stärke und doppelte Geschwindigkeit des vorhandenen Systems erreichen. Dies ist die konsequente Fortführung und Erweiterung der Bildgebungsinfrastruktur für die Neurowissenschaften und sichert Magdeburg eine Führungsposition in diesem Forschungsfeld.

Projekt im Forschungsportal ansehen

SFB 1315 - Teilprojekt B06 - Mechanismen und Störungen der Gedächtniskonsolidierung: Von Synapsen zur Systemebene
Laufzeit: 01.01.2018 bis 31.12.2022

Im Teilprojekt B06 untersuchen wir, welche funktionellen Netzwerke im Gehirn die Festigung (Konsolidierung) neu gelernter Informationen regulieren. Wir wollen untersuchen, wie die Dopamin-Freisetzung in der Ruhephase nach dem Lernen mit der langfristigen Gedächtniskonsolidierung und deren Abnahme im Alter in Verbindung steht. Um diese Ziele erreichen zu können, werden wir multi-modale funktionelle Magnetresonanztomographie (fMRI) und molekulare Bildgebung (Positronen-Emissions-Tomographie - PET) mit Hilfe des in Magdeburg neu verfügbaren simultanen MRT und -PET Gerätes nutzen. Wir verbinden die experimentellen Untersuchungen mit computationaler Modellierung der Hirnaktivitätsdaten um die Netzwerkprozesse im Gehirn besser zu verstehen.

Projekt im Forschungsportal ansehen

Upgrade 7 Tesla MRT
Laufzeit: 01.01.2022 bis 31.10.2022

Das Upgrade ermöglicht den vorhandenen 7 Tesla Magnetresonanztomographen der OVGU, auf den aktuellen Stand der Technik der 7 Tesla Ultrahochfeld-MRT zu bringen. Das Upgrade erlaubt die sichere Nutzung von Mehrkanal-Anregungsverfahren (pTx), die zu verbesserter Bildqualität in Regionen des Gehirns führt, die mit bisheriger Technik nicht homogen angeregt werden können (vor allem im Kleinhirn und im unteren Bereich des Temporallappens). Hierzu ist neben dem Hard- und Software-Upgrade des MRT Gerätes, zudem eine neue Mehrkanal-Sendespule notwendig. Das Hardware-Upgrade ist Voraussetzung für die Verwendung der neuesten Software Generation (VE12) und damit der Nutzung von Neuentwicklungen von MRT Mess-Sequenzen, insbesondere der Multiband-Technik. Hier erlauben neuartige Verfahren der Aufnahme eine größeren Anzahl Schichten bei gleicher Messzeit, die auf die im Upgrade enthaltenen leistungsstärkeren Rechner und Steuerungselektronik angewiesen sind. Durch die Maßnahme wird die OVGU somit in die Lage versetzt, auch für die nächsten Jahre voll kompetitive Drittmittelforschung im Rahmen von EU, BMBF und DFG Projekten, wie dem aktuellen SFB 1436 durchführen zu können. Auch für die Exzellenzinitiative der OVGU bildet die Bildgebungsinfrastruktur eine wichtige Säule.

Projekt im Forschungsportal ansehen

Vessel distance mapping: Quantification of subcortical arterial and venous vascular patterns to study their interdependency
Laufzeit: 01.07.2020 bis 30.06.2022

Die Integrität und Funktion des Gehirns ist auf den Zu- und den Abfluss von Blut durch das arterielle bzw. venöse Gefäßsystem angewiesen. Subkortikale Strukturen, die an motorischen, sensorischen, kognitiven und verhaltensbezogenen Aufgaben beteiligt sind, werden von den großen Hirnarterien durchströmt. Die Perfusionsterritorien dieser großen Arterien sind zwischen Probanden räumlich variabel. Diese Variabilität beeinflusst die Organisation der kleinen, perforierenden Arterien. Wir vermuten, dass sich diese Variabilität der subkortikalen Perfusionsterritorien von der arteriellen Seite ausgehend durch das Kapillarbett in die Organisation der subkortikalen Venen propagiert. Daher nehmen wir an, dass subkortikale arterielle und venöse Gefäße voneinander abhängig sind und dass unterschiedliche Gefäßmuster existieren. Wenn sich also die Trajektorie eines einzelnen, subkortikalen Gefäßes verändert, könnte dies zu Veränderungen im umgebenden arteriellen und venösen Netzwerk führen, um ein bestimmtes Muster lokaler Gefäßabstände aufrechtzuerhalten. Diese vermutete, wechselseitige Abhängigkeit der arteriell-venösen Muster ist nach unserem besten Wissen bisher nicht umfassend untersucht worden. Um diese Hypothese am lebenden Menschen nicht invasiv zu bestätigen, wurden folgende Ziele identifiziert:(1) Verwendung von Ultra-Hochfeld-MRT und prospektiver Bewegungskorrektur, um die erforderlichen hohen Auflösungen (Voxelgröße < 0,4 mm) zur Darstellung der perforierenden Arterien und Venen zu erreichen(2) Segmentierung des Gefäßsystems mit Hilfe eines Vesselness-Filters und Verwendung einer Entfernungstransformation, um Gefäßdistanzkarten zu berechnen.(3) Finden von gemeinsamen, subkortikalen arteriell-venösen Mustern durch unüberwachtes Clustering.(4) Validierung jedes Verarbeitungsschrittes durch ExpertenDurch Erreichen dieser Ziele wird eine neuartige, vollautomatische Technik zur Analyse von Gefäßdistanzmustern etabliert. Darüber hinaus könnte der Nachweis der Interdependenz des arteriellen und venösen Gefäßsystems einen Einfluss auf die Bildgebung, Diagnose und Behandlung kleiner Gefäße im Allgemeinen haben, da eine gemeinsame Analyse vorteilhafter wäre als die Fokussierung auf eine einzelne Seite des Gefäßsystems. Da die vaskuläre Komponente neurodegenerativer Erkrankungen und des Alterns spezifische Gefäßmusterverläufe induzieren könnte, könnte der vorgeschlagene Ansatz als neuer Biomarker in zukünftigen, longitudinalen Studien eingesetzt werden.

Projekt im Forschungsportal ansehen

ABINEP-M4-project 1: Weiterentwicklung von Hochfeld-MR zum in-vivo Mikroskop und Kombination mit MR-PET (Anwendung: Hippocampus-Mapping, Verlaufsdiagnose von Demenzen)
Laufzeit: 01.10.2017 bis 30.05.2022

In this ABINEP sup-project high field MRI and MR-PET will be further developed to detect and visualize hippocampal structure and sub-structures. These methods will be applied in clinical studies with subjects  in prodromal (non-symptomatic) stages and early stages of dementia.

Projekt im Forschungsportal ansehen

MEMoRIAL-Module I: Medical Engineering
Laufzeit: 01.09.2016 bis 30.04.2022

Medical imaging encompasses a versatile toolkit of methods to generate anatomical images of a single organ or even the entire patient for diagnostic and therapeutic purposes. Radiation-based imaging technologies are of inestimable importance and hence performed in daily clinical practice.
Electromagnetic radiation may, however, cause undesirable side effects. Consequently, methods allowing for dose reduction are expected to prospectively come into focus. This may specifically hold for patients, who need to be scanned periodically for therapy and/or health progress monitoring.
Instead of performing an entire scan per session, prior knowledge derived from preexisting multimodal image data sourcing, anatomical atlases, as well as mathematical models may be integrated - the latter reducing radiation dose and scan duration thus finally saving health expenditures.
In order to do so, available images and data need to be updated based on newly acquired subsampled data.
The application of prior knowledge may furthermore advance minimally invasive interventions by means of intraoperative image acquisition. Within this context, consecutive scans usually show a high degree of similarity while differing only in probe position and respiratory organ motion. Lower radiation loads vs. significant increases in image frame rate may result when spotting those similiarities based on formerly acquired image information.
The integration of prior knowledge therefore holds a great potential for improving contemporary interventional procedures - especially in the field of interventional magnetic resonance imaging (IMRI).
Graduates in medical imaging science, medical engineering or engineering, computer, and natural science will have the opportunity to work with high-tech diagnostic devices such as x-ray examination and computed tomography (CT), state-of-the-art single-photon emission computed tomography (SPECT) and positron emission tomography (PET) within a structured 4-year/48-month PhD track.

Projekt im Forschungsportal ansehen

MEMoRIAL-M1.4 | Use of prior knowledge for interventional MRI
Laufzeit: 01.01.2018 bis 31.03.2022

This sub-project aims at the reconstruction of dynamic time series from fast acquisitions.

Typically, these fast acquisitions are of lower quality (e.g. wrt resolution, contrast, or artefacts) compared to slower scans with higher resolution, the latter being acquired for the purpose of planning. At the same time we know that the object is mainly left unchanged apart from potential non-linear deformations and the presence of an interventional tool (e.g. a needle) with its position being precisely known.

Consequently, a lot is known about the object expecting this prior knowledge to enable the reconstruction of dynamic high resolution and high contrast images.
Therefore, different approaches may be applied including image-based matching and deformation, model-based reconstruction using prior knowledge to support regularisation, or even machine learning methods.

Projekt im Forschungsportal ansehen

Deutsche Ultrahochfeld Bildgebung (GUFI II) (DFG, SP632-9-1)
Laufzeit: 01.07.2017 bis 31.12.2021

Das GUFI-Netzwerk wurde Ende 2013 als DFG-geförderte Core Facility gegründet. Die anfängliche Projektdauer betrug drei Jahre. Das Hauptziel von GUFI ist es, den Zugang zu deutschen Ultrahochfeld (UHF)-Magnetresonanz (MR)-Standorten zu koordinieren und Prozeduren zu harmonisieren. GUFI hat bereits wichtige Beiträge zur Bewältigung dieser Herausforderungen geleistet. Eine Reihe von Meilensteinen wurden beim Aufbau der nationalen UHF-MR-Gemeinschaft erreicht, einschließlich der Einrichtung eines gemeinsamen Präsentations- und Zugangsportals für alle UHF-MR-Standorte; einer regelmäßigen Qualitätskontrolle; Konsens über Zugangsverfahren, Umgang mit Implantaten und Verfahren zur Spulenprüfung; und regelmäßige Kommunikation zwischen allen UHF-Standorten. Seit 2017 wird eine zweite Phase von GUFI durch die DFG gefördert, in welcher nun folgende Ziele verfolgt werden:

  • Etablierung einer Online-Plattform für MR-Sicherheitstraining inkl. Prüfungsfragen.
  • Fortsetzung und Erweiterung der Etablierung von Verfahren für die sichere Untersuchung von Probanden mit Implantaten. Fortsetzung und Verfeinerung von QA-Aktivitäten.
  • Formulierung und Veröffentlichung von Positionspapieren.
  • Jährliche Workshops mit Teilnahme von allen GUFI-Standorten.
  • Planung erster multizentrischer UHF-Studien.
  • Wartung und Erweiterung der Online-Kommunikationsplattform.
  • Koordination mit anderen internationalen Initiativen wie UK7T und Euro-Bioimaging.
  • Vorbereitung von Zugangsverfahren für die Infrastruktur, die an den nationalen Biomedizinischen Bildgebungseinrichtungen in Jülich und Heidelberg beantragt wurde, als Teil der National Roadmap für Forschungsinfrastrukturen des Bundesministeriums für Bildung und Forschung (BMBF).

Projekt im Forschungsportal ansehen

F&E RF-System für Neonatale MR-Tomographie
Laufzeit: 16.04.2018 bis 31.12.2021

Die MR-Bildgebung ist bislang für die Untersuchung von erwachsenen Patienten optimiert und die Untersuchung Neugeborener bzw. kleine Kinder ist eine Herausforderung für die Radiologie sowie die Neonatologie (technisch und logistisch). Das Startup Neoscan Solutions entwickelt daher ein speziell für neonatale Diagnostik dediziertes MRT-Gerät, welches aufgrund der geringen Größe, des niedrigen Gewichts und der kryogenfreien Kühlung in der Kinderintensivstation aufgestellt werden kann. Gemeinsam mit dieser Firma erforschen wir in diesem Verbundprojekt das Hochfrequenz-Sende- und Empfangssystem für ein solches MRT Gerät mit 1.5T Magnetfeldstärke. Dies beinhaltet Sende- und Empfangsspulen für Untersuchungen kleiner Kinder aber auch die Nutzung im Inkubator sowie die Lagerung der kleinen Patienten.

Projekt im Forschungsportal ansehen

MEMoRIAL-M1.7 | Model-based reconstruction MRI
Laufzeit: 01.10.2017 bis 31.12.2021

The acquisition of MR images might run considerably slow due to the one-dimensional character of the signal and the need to consecutively measure many data points for a single image. Classically, an image cannot be uniquely reconstructed if the number of measured data points deceeds the number of points in the image.

In this project, prior knowledge derived from other sources than the MR acquisition itself will be used to uniquely reconstruct MR images from less-than-complete measurement data, particularly aiming at faster acquisition in moving organs. Therefore, (prior) knowledge such as information on the position of interventional instruments or the subject's breathing motion (deforming abdominal organs whereas not entirely changing the object itself) will be exploited and incorporated into mathematical models - the latter describing these objects and in turn being parameterised based on measurement data.

Projekt im Forschungsportal ansehen

F&E Gradientensystem für Neonatale MR-Tomographie
Laufzeit: 15.12.2018 bis 15.11.2021

Die MR-Bildgebung ist bislang für die Untersuchung von erwachsenen Patienten optimiert und die Untersuchung Neugeborener bzw. kleine Kinder ist eine Herausforderung für die Radiologie sowie die Neonatologie (technisch und logistisch). Das Startup Neoscan Solutions entwickelt daher ein speziell für neonatale Diagnostik dediziertes MRT-Gerät, welches aufgrund der geringen Größe, des niedrigen Gewichts und der kryogenfreien Kühlung in der Kinderintensivstation aufgestellt werden kann. Gemeinsam mit dieser Firma erforschen wir in diesem Verbundprojekt das Gradientensystem für ein solches MRT Gerät mit 1.5T Magnetfeldstärke. Dies beinhaltet Steuerung, Überwachung und Optimierung des Teilsystems.

Projekt im Forschungsportal ansehen

ABINEP-M2-project 3: Modellierung Dopamin-induzierter neuronaler Netzwerk-Aktivität / "Learning conditional associations: rich temporal context and involvement of hippocampus / medial temporal lobe"
Laufzeit: 01.05.2017 bis 31.10.2021

Animals exploring unknown environments face problems at multiple time-scales: in the short run, they must solve problems of pattern recognition, scene understanding, decision making and action selection while, in the long run, they must also develop strategies for building an internal representation of the environment as a basis for causal understanding / generative modelling.  From a computational point of view, the main difficulty is representing and learning the rich temporal structures and conditionalities that encapsulate the co-dependencies between environment and actions.
Current behavioural tasks – e.g., sequence learning, sequential reaction time tasks, conditional associative learning – barely touch upon these difficult issues.  To address this more directly, we will study human learning of arbitrary sensorimotor mappings in the presence of rich temporal context, as well as the neural correlates of such learning in networks involving the hippocampus / medial temporal lobe.  Specifically, we hypothesize that rich, quasi-naturalistic, temporal context will (i) dramatically facilitate learning by means of (ii) engaging hippocampus and medial temporal lobe structures.
To investigate these two hypotheses, we will monitor human learning of visuomotor associations in temporal contexts of different complexity.  To this end, we will develop novel, quasi-naturalistic, temporal sequences with statistical structure over several time-scales.  To investigate neural correlates, we will study functional correlations of voxel-based BOLD activity in pairs of (small) brain areas – e.g., hippocampus and inferior temporal cortex – relying on 3T or 7T high-resolution MRI.  Recent work, by ourselves and others, shows that voxel-level functional correlations can delineate with high fidelity the cortical circuits engaged in different task states.

Projekt im Forschungsportal ansehen

MEMoRIAL-M1.2 | Under-sampled MRI for percutaneous intervention
Laufzeit: 01.05.2017 bis 31.07.2021

Background
Undersampling MR images leads to an insufficient amount of data for conventional reconstruction techniques, making it an ill posed inverse problem. Deep neural networks provide promising solutions to the problem, but lack explainability.

Objective
MRI acceleration, especially golden angle radial sampling, in the process making real time MRI possible.

Methods
>> Utilizing and improving data-driven neural network approaches and their analysis

Results
>> Up-to-date deep learning reconstruction methods for undersampled radial MR signal data in image and signal domain with competitive results in that field of research

Conclusions
Current methods still mark the starting point since they are still missing key points like holoporphic activation functions for computing complex gradients throughout neural nets.

Orignality
>> Problem specific methods that are tailored to the underlying complex valued MR problem

Keywords
>> MRI, undersampling, reconstruction, deep learning, unblackboxing

Projekt im Forschungsportal ansehen

Gefäßdistanzkartierung: Quantifizierung der subkortikal arteriellen und venösen Gefäßmuster um deren Wechselwirkung zu untersuchen
Laufzeit: 01.07.2020 bis 30.06.2021

Die Integrität und Funktion des Gehirns ist auf den Zu- und den Abfluss von Blut durch das arterielle bzw. venöse Gefäßsystem angewiesen. Subkortikale Strukturen, die an motorischen, sensorischen, kognitiven und verhaltensbezogenen Aufgaben beteiligt sind, werden von den großen Hirnarterien durchströmt. Die Perfusionsterritorien dieser großen Arterien sind zwischen Probanden räumlich variabel. Diese Variabilität beeinflusst die Organisation der kleinen, perforierenden Arterien. Wir vermuten, dass sich diese Variabilität der subkortikalen Perfusionsterritorien von der arteriellen Seite ausgehend durch das Kapillarbett in die Organisation der subkortikalen Venen propagiert. Daher nehmen wir an, dass subkortikale arterielle und venöse Gefäße voneinander abhängig sind und dass unterschiedliche Gefäßmuster existieren. Wenn sich also die Trajektorie eines einzelnen, subkortikalen Gefäßes verändert, könnte dies zu Veränderungen im umgebenden arteriellen und venösen Netzwerk führen, um ein bestimmtes Muster lokaler Gefäßabstände aufrechtzuerhalten. Diese vermutete, wechselseitige Abhängigkeit der arteriell-venösen Muster ist nach unserem besten Wissen bisher nicht umfassend untersucht worden. Um diese Hypothese am lebenden Menschen nicht invasiv zu bestätigen, wurden folgende Ziele identifiziert:
(1) Verwendung von Ultra-Hochfeld-MRT und prospektiver Bewegungskorrektur, um die erforderlichen hohen Auflösungen (Voxelgröße < 0,4 mm) zur Darstellung der perforierenden Arterien und Venen zu erreichen
(2) Segmentierung des Gefäßsystems mit Hilfe eines Vesselness-Filters und Verwendung einer Entfernungstransformation, um Gefäßdistanzkarten zu berechnen.
(3) Finden von gemeinsamen, subkortikalen arteriell-venösen Mustern durch unüberwachtes Clustering.
(4) Validierung jedes Verarbeitungsschrittes durch Experten

Durch Erreichen dieser Ziele wird eine neuartige, vollautomatische Technik zur Analyse von Gefäßdistanzmustern etabliert. Darüber hinaus könnte der Nachweis der Interdependenz des arteriellen und venösen Gefäßsystems einen Einfluss auf die Bildgebung, Diagnose und Behandlung kleiner Gefäße im Allgemeinen haben, da eine gemeinsame Analyse vorteilhafter wäre als die Fokussierung auf eine einzelne Seite des Gefäßsystems. Da die vaskuläre Komponente neurodegenerativer Erkrankungen und des Alterns spezifische Gefäßmusterverläufe induzieren könnte, könnte der vorgeschlagene Ansatz als neuer Biomarker in zukünftigen, longitudinalen Studien eingesetzt werden.

Projekt im Forschungsportal ansehen

SFB 1436/1 Start-up Funding - Z02 "Human imaging at meso-scale"
Laufzeit: 01.07.2020 bis 31.12.2020

Der SFB 1436 hat das Ziel, neuronale Ressourcen auf allen Größenskalen zu untersuchen durch einen interdisziplinären Ansatz, welcher funktionelle und strukturelle Eigenschaften von kortikalen und subkortikalen Schaltkreisen mit Verhalten und Leistungsfähigkeit in Zusammenhang bringt und Interventionen untersucht. Technologische Fortschritte im Bereich der in vivo Gehirnbildgebung des menschlichen Gehirns sowie der multimodalen Modellierung sollen eine Brücke zwischen Molekularen Studien an Tiermodellen und Verhaltensstudien an Versuchspersonen und Patienten bauen. Projekt Z02 des SFB 1436 wird Technologien entwickeln, testen und bereitstellen, welche mittels Ultrahochfeld-MRT neue Möglichkeiten schaffen indem sie (i) die geeigneten Messmethoden etablieren und beste Datenqualität sichern und (ii) komputationale Werkzeuge und Analysemethoden erforschen, um Hirnnetzwerke auf unterschiedlichen Skalen in einzelnen Individuen sowie in Gruppen zu modellieren.

Projekt im Forschungsportal ansehen

SFB 779/3, Teilprojekt A07 "Kontrolle und funktionelle Anatomie der Dopamin-Freisetzung beim Menschen" (Prof. Speck / Prof. Düzel)
Laufzeit: 01.01.2016 bis 31.12.2019

Im Teilprojekt A07 untersuchen wir welche funktionellen Netzwerke die Dopamin-Freisetzung im Gehirn regulieren wenn junge und ältere Menschen neue Ereignisse sehen und enkodieren. Wir wollen untersuchen wie die Dopamin-Freisetzung mit der langfristigen Gedächtniskonsolidierung für neue Stimuli und deren Abnahme im Alter in Verbindung steht. Um diese Ziele erreichen zu können werden wir multi-modale fMRI und molekulare Bildgebung (PET) mit Hilfe des in Magdeburg neu verfügbaren simultanen MR-PET Gerät nutzen. Wir werden auch die Frage beantworten ob die Integrität einer noradrenergen Region, des Locus Coeruleus, einen kritischen Regulator für die Dopamin-Freisetzung im Hippocampus darstellt.

Projekt im Forschungsportal ansehen

SFB 779/3, Teilprojekt A12 "(Dys-)Funktion der Habenula bei Entscheidungen über Bevorzugung oder Vermeidung" (Prof. Speck / Prof. Ullsperger)
Laufzeit: 01.01.2016 bis 31.12.2019

Projekt A12 untersucht die Rolle der Habenula (Hb) bei motiviertem Verhalten des Menschen. Die Hb, eine kleine Hirnstruktur des Epithalamus, kontrolliert einen Hauptinformationsweg vom Vorderhirn zu den monoaminproduzierenden Kerngebieten des Mittelhirns und unterdrückt so die Ausschüttung der Botenstoffe Dopamin und Serotonin. Das aktuelle Projekt hat zum Ziel, den Beitrag der Hb zu aktivem und passivem Vermeidungsverhalten und zum Lernen aus negativen Ereignissen zu erforschen. Die Aktivität der Hb, ihre Verbindung mit anderen Hirnstrukturen und ihre neurochemischen Interaktionen werden mittels hochauflösender struktureller, diffusionsgewichteter und funktioneller Magnetresonanztomographie, pharmakologischer Experimente und in-vivo Rezeptordichtebestimmung mit Positronenemissionstomographie bei gesunden Versuchspersonen untersucht. Das Verständnis der Funktion der Hb ist über das grundlagenwissenschaftliche Interesse hinaus wichtig für die klinisch orientierte neuropsychiatrische Forschung, da Dysfunktionen der Hb vermutlich zu Entstehung und Verlauf von psychischen Störungen, insbesondere Depression und Suchterkrankungen, beitragen. Daher werden in diesem Projekt Suchtkranke hinsichtlich möglicher Abweichungen des Volumens und der strukturellen Verbindungen mit anderen Hirnregionen untersucht.

Projekt im Forschungsportal ansehen

STIMULATE
Laufzeit: 01.01.2015 bis 31.12.2019

Die Forschungsgruppe Interventionelle MR-Bildgebung innerhalb des Forschungscampus STIMULATE erforscht gemeinsam zwischen SIEMENS und der OVGU spezielle Protokolle (Sequenzen) für den Einsatz der MRT-Bildgebung in der Intervention, und testet diese auf ihr Verbesserungspotenzial. Die primären Ziele sind Echtzeitfähigkeit der Bildgebung bei hohem Tumorkontrast und gemeinsam mit dem weiteren Partner Metria Inc. eine automatische Verfolgung des OP-Instruments zur permanenten Visualisierung. Mittelfristig sollen neue Kontrastmechanismen wie Gewebeelastizität oder Leitfähigkeit komplementäre Informationen zur Tumoridentifikation und -visualisierung liefern.

Projekt im Forschungsportal ansehen

RGR-based motion tracking for real-time adaptive MR imaging and spectroscopy (NIH)
Laufzeit: 01.08.2014 bis 31.07.2019

In diesem vom National Institute of Health geförderten Projekt werden Methoden für die prospektive Bewegungskorrektur während MRT Aufnahmen entwickelt. Diese werden die Untersuchung von sich bewegenden Patienten ermöglichen und somit Wiederholungen von Untersuchungen vermeiden und zu einer deutlich besseren Bildqualität beitragen.

Projekt im Forschungsportal ansehen

Hoch-beschleunigte verzerrungsfreie diffusion-gewichtete MR-Bildgebung bei ultra-hohen Feldstärken (7T): Charakterisierung der grauen Substanz (DFG)
Laufzeit: 01.05.2016 bis 31.05.2019

Single-Shot Echo-Planar Bildgebung (EPI) erlaubt moderat hohe räumliche Auflösung, ist jedoch weit verbreitet aufgrund seiner hohen Zeiteffizienz. EPI wird für viele verschiedene Anwendungen, wie etwa funktionelle MRT (fMRT), Perfusionsbildgebung oder Diffusions-Tensor Bildgebung (DTI) genutzt. EPI ist jedoch sehr empfindlich für Inhomogenitäten des Magnetfeldes durch Unterschiede in den magnetischen Eigenschaften (Suszeptibilität) innerhalb des Untersuchungsobjektes. Aufgrund der sehr geringen effektiven Bandbreite in Phasenkodierrichtung werden hierdurch Phasenänderungen verursacht, die zu starken geometrischen Verzerrungen der Abbildung führen. Zudem sind diese Verzerrungen bei Diffusionsbildgebung durch Wirbelströme der schnell geschalteten starken Gradienten von der Richtung der Diffusionskodierung abhängig. Die Feldstörungen sind proportional zur Stärke des Hauptmagnetfeldes und daher steigen die geometrischen Verzerrungen ebenfalls an und werden bei höchsten Feldstärken wie etwa 7T zu einer echten Herausforderung für die EPI-basierte Bildgebung. In diesem Projekt beabsichtigen wir die Entwicklung, Implementierung und Tests von Verfahren, welche EPI Verzerrungen messen, charakterisieren und korrigieren. Die Entwicklungen werden bei 7T in Testobjekten sowie Probanden und Patienten durchgeführt. Dabei wird die in den Vorarbeiten optimierte Methode zur Verzerrungskorrektur für fMRI Anwendungen implementiert und darüber hinaus für DTI Anwendungen erweitert. Wir erwarten eine deutliche Steigerung der Bildqualität von EPI, wodurch die Sensitivität der Methode erhöht wird und eine genauere Bestimmung der Lokalisation möglich wird. All dies wird ohne Verlängerung der Messzeit erreicht, da sämtliche Messdaten direkt in die Berechnung der DTI Resultate eingehen.

Projekt im Forschungsportal ansehen

Motion Correction for MRI, Kooperation mit KinetiCor
Laufzeit: 01.11.2013 bis 31.10.2017

Innerhalb des Unterauftrages #1 zwischen KinetiCor und der OVGU werden Methoden, welche in meiner Abteilung (BMMR) an der OVGU entwickelt wurden, an einen neuen Standort transferiert und erweitert. Die Methoden wurden auf einem 7T MRT des Baujahres 2004 entwickelt und werden für Geräte neuester Bauart und unterschiedlicher Magnetfeldstärke weiterentwickelt. Dies bedingt Modifikationen und Anpassungen der Methoden inklusive neuer Entwicklungen zur Ankopplung und Kalibrierung der Geräte sowie Messmethoden. Die Bewegungskorrektur ist ein wesentlicher Aspekt unseres aktuellen Forschungsportfolios und daher sind diese gemeinsamen Forschungsarbeiten mit dem Partner KinetiCor sowie der Universität Freiburg, welche ebenfalls bilateraler Partner von KinetiCor ist, von wesentlichem Interesse für unsere Forschung, welche hiervon ebenfalls profitiert. Ich ordne die Arbeiten daher als Anwendungsforschung mit dem Ziel des Erkenntnisgewinns sowie Erweiterung der möglichen Anwendungen auf weitere Feldstärken und Gerätekonfigurationen ein.

Projekt im Forschungsportal ansehen

Deutsche Ultrahochfeld Bildgebung (GUFI I) (DFG)
Laufzeit: 01.12.2013 bis 31.05.2017

Innerhalb der vergangenen Jahre wurden in Deutschland sieben Zentren für humane Ultrahochfeld (UHF)-Magnetresonanz (MR)-Bildgebung eingerichtet. Um diese kostspielige und hochkomplexe Technologie einer größeren Anzahl von Forschern zugänglich zu machen, bedarf es einer Zusammenarbeit der UHF-MR-Zentren auf organisatorischer Ebene. Zur Erlangung dieses Ziels, haben alle deutschen UHF-Zentren beschlossen, ein nationales Netzwerk mit dem Namen German Ultrahigh Field Imaging (GUFI) zu etablieren, das durch die Zentren in Essen und Magdeburg koordiniert werden soll. Innerhalb des hier beantragten Projektes werden grundlegende Organisationsstrukturen geschaffen, die zum einen die administrative Ebene betreffen, und zum anderen auf der technischen Ebene eingreifen. Insbesondere sollen Kommunikationsstrukturen zwischen den Zentren und zu externen Nutzern über ein Web-Portal geschaffen werden. Auf der technischen Ebene geht es um die Bereitstellung von aktuellen Bildgebungsprotokollen und vor allem um die Entwicklung neuer Ansätze zur Gewährleistung gemeinsamer Standards für die Qualität der gewonnenen Bild- und Spektraldaten, optimiert für die Herausforderungen von UHF-MR-Geräten, damit externe Nutzer optimale Bedingungen vorfinden bzw. Messungen auf verschiedenen UHF-MR-Geräten miteinander verglichen werden können.

Projekt im Forschungsportal ansehen

Profitiert multivariate Musteranalyse von fMRT - Daten mit hoher Auflösung und Sensitivität bei hoher Magnetfeldstärke (7T) (DFG)
Laufzeit: 01.07.2013 bis 31.12.2016

Multivariate Musteranalysen (MVPA) funktionell-magnetresonanztomographischer Daten haben in letzter Zeitgroße Verbreitung in den Neurowissenschaften gefunden. Mit MVPA ist die Hoffnung verbunden, räumlichhochaufgelöste Information über Hirnfunktionen zu erhalten. In letzter Zeit wurden jedoch kontroverseErgebnisse publiziert über den Informationsgehalt von fMRT-Signalen unterschiedlicher Auflösung und derenBeiträge zur Klassifikation von Wahrnehmungsinhalten mittels MVPA. Im vorliegenden Projekt wollen wirsystematisch untersuchen, inwieweit die höhere räumliche Auflösung und Sensitivität, die durch hoheMagnetfeldstärke ermöglicht wird, zu einer Verbesserung der Klassifikation von Aktivierungsmustern beitragen.Dazu variieren wir die Feldstärke (3T und 7T), vergleichen verschiedene räumliche Auflösungen miteinander,analysieren den Einfluss der Sensitivität und untersuchen diese Faktoren unter Stimulationsbedingungen, dieUnterschiede im neuronalen Erregungsmuster im Submillimeter- bzw. Millimeterbereich hervorrufen. Ziel derUntersuchungen ist die bessere Charakterisierung der Einflussfaktoren auf multivariate Musteranalysen und,damit verbunden, die Optimierung künftiger MVPA-Designs bzgl. Aufnahme und Auswertung.

Projekt im Forschungsportal ansehen

HiMR - Ultra-High Field Magnetic Resonance Imaging
Laufzeit: 01.11.2012 bis 31.10.2016

Das Hochfeld-Magnetresonanz (HiMR) Trainingsnetzwerk dient der Ausbildung von exzellenten  akademischen und industriellen Forschern im Bereich der Ultrahochfeld-Magnetresonanztomografie (UHF-MR). Damit wird die zunehmende und derzeit unbefriedigte Nachfrage nach Spezialisten seitens Wissenschaft und Industrie adressiert. Die sehr komplexe und vielschichtige Natur von UHF-MR erfordert eine integrierte Ausbildungsumgebung für junge Forscher. Das Training erfolgt deshalb multidisziplinär in den Forschungsthemen, -sektoren und -gruppen.
Das Trainingsnetzwerk gliedert sich in vier Themen der Entwicklung von UHF. Das erste Thema konzentriert sich auf verbesserte strukturelle Bildgebung, um unser Verständnis der Ursprünge der Kontraste in MRT-Aufnahmen zu erhöhen und nicht-invasive Biomarker für Multiple Sklerose zu entwickeln. Das zweite Thema ist auf die Ausnutzung von UHF ausgerichtet, um ultrahoch auflösende funktionelle MRT (fMRT) zu entwickeln, die in neurowissenschaftlicher Grundlagenforschung sehr wichtig sein wird. Darüber hinaus soll die Verwendung in Kliniken erhöht werden. Das dritte Thema soll  die erhöhte Sensibilität der MR-Spektroskopie (MRS) bei UHF nutzen, um hochspezifische Biomarker zu entwickeln. Das letzte Thema entwickelt neuartige Hardware für Forschung und Anwendung und Methoden zur Überwachung und Korrektur von Bewegungen.
Das interdisziplinäre und intersektorale Ausbildungsprogramm bietet eine Plattform für die Ausbildung von jungen Wissenschaftlern zu Spezialisten im Bereich UHF-MR. Zusätzlich werden sie mit einer breiten Palette von Arbeitsumgebungen und experimentellen Techniken.
Das Trainingsnetzwerk bildet ein Multipartner Initial Training Netwerk im Bereich Marie Curie Maßnahmen des 7. Forschungsrahmenprogramm der EU. Acht europäische Einrichtungen werden von der EU gefördert.

Projekt im Forschungsportal ansehen

Highly Accelerated Distortion-Free Diffusion-Weighted MR Imaging at Ultra High Field (7T) (DFG)
Laufzeit: 01.09.2012 bis 31.08.2015

Single-Shot Echo-Planar Bildgebung (EPI) erlaubt moderat hohe räumliche Auflösung, ist jedoch weit verbreitet aufgrund seiner hohen Zeiteffizienz. EPI wird für viele verschiedene Anwendungen, wie etwa funktionelle MRT (fMRT), Perfusionsbildgebung oder Diffusions-Tensor Bildgebung (DTI) genutzt. EPI ist jedoch sehr empfindlich für Inhomogenitäten des Magnetfeldes durch Unterschiede in den magnetischen Eigenschaften (Suszeptibilität) innerhalb des Untersuchungsobjektes. Aufgrund der sehr geringen effektiven Bandbreite in Phasenkodierrichtung werden hierdurch Phasenänderungen verursacht, die zu starken geometrischen Verzerrungen der Abbildung führen. Zudem sind diese Verzerrungen bei Diffusionsbildgebung durch Wirbelströme der schnell geschalteten starken Gradienten von der Richtung der Diffusionskodierung abhängig. Die Feldstörungen sind proportional zur Stärke des Hauptmagnetfeldes und daher steigen die geometrischen Verzerrungen ebenfalls an und werden bei höchsten Feldstärken wie etwa 7T zu einer echten Herausforderung für die EPI-basierte Bildgebung. In diesem Projekt beabsichtigen wir die Entwicklung, Implementierung und Tests von Verfahren, welche EPI Verzerrungen messen, charakterisieren und korrigieren. Die Entwicklungen werden bei 7T in Testobjekten sowie Probanden und Patienten durchgeführt. Dabei wird die in den Vorarbeiten optimierte Methode zur Verzerrungskorrektur für fMRI Anwendungen implementiert und darüber hinaus für DTI Anwendungen erweitert. Wir erwarten eine deutliche Steigerung der Bildqualität von EPI, wodurch die Sensitivität der Methode erhöht wird und eine genauere Bestimmung der Lokalisation möglich wird. All dies wird ohne Verlängerung der Messzeit erreicht, da sämtliche Messdaten direkt in die Berechnung der DTI Resultate eingehen.

Projekt im Forschungsportal ansehen

Neuron-Verbund "REVlS": Restitution von Sehleistungen nach Schlaganfall durch nicht-invasive elektrische Hirnstimulation
Laufzeit: 01.04.2012 bis 31.03.2015

1. Vorhabenziel; REVIS befasst sich mit der Plastizität des visuellen Systems und der Evaluation eines neuen, nicht- invasiven elektrischen Hirnstimulationsverfahrens zur Restitution von Sehleistungen. Weltweit gibt es 11 Mio. Schlaganfall-Patienten mit Schädigungen der Sehleistung (p.a. 2.1 Mio. Neufälle), die dadurch erhebliche Alltagsprobleme haben. Über eine Stärkung der neuronalen Plastizität mit nicht-invasiver Stromstimulation wollen wir eine schnellere Unabhängigkeit, Wiedereingliederung in den Alltag/Beruf, und bessere Lebensqualität (Orientierung und Leseleistung), sowie eine größere Mobilitat erreichen.
2. Arbeitsplanung; Residuale Sehleistungen und Hirnplastizität werden in Patienten nach Posteriorinfarkten untersucht . Visuelle Dysfunktionen werden identifiziert und Merkmale der Postläsionsplastizität (Reorganisation rezeptiver Felder, lokale Aktivierung und Konnektivitäten) dokumentiert. Mit Wechsel- oder Gleichstrom-Stimulation (transorbital bzw. transkranial) wollen wir Veränderungen der lokalen und globalen Plastizität in Patienten bewirken und dadurch eine deutliche Verbesserung der Sehleistung erreichen, die Alltagsrelevanz haben. REVIS wird in Magdeburg koordiniertI (B.SabeI/C.Gall , Inst f. Med. Psychol.; O.Speck, Inst. f. Exp. Physik, Magdeburg) und Partner sind P. Rossini (Rom), T. Tatlisumak (Helsinki) sowie - für Tierstudien- V. Waleszczyk (Warsaw); die kommerzielle Verwertung erfolgt durch die EBS Technologies (Kleinmachnow).

Projekt im Forschungsportal ansehen

4D Phasenkontrast Magnetresonanzbildgebung bei 3Tesla für den Ingenieursbereich, Kooperation mit Volkswagen
Laufzeit: 15.08.2014 bis 31.12.2014

Die Phasenkontrast MR Bildgebung ist im klinischen Einsatz ein viel genutzte Technik zur Darstellung von Flussverhältnissen in Gefäßen, z.B. im Aortenbogen oder in den intrakranialen Gefäßen. Im vorliegenden Projekt wird diese Technik gemeinsam mit dem Industriepartner Volkswagen im nicht-medizinischen Umfeld angewendet um ingenieurwissenschaftliche Fragestellungen zu beantworten.

Projekt im Forschungsportal ansehen

Forschungscampus STIMULATE, Interventionelle MRT
Laufzeit: 01.03.2014 bis 31.12.2014

Für jede Intervention ist die genaue Kenntnis der Position der Instrumente relativ zur Patientenanatomie entscheidend. Zudem ist die räumliche Übereinstimmung der Voraufnahmen für die Planung des Eingriffs mit der aktuellen intraoperativen Bildgebung essentiell. Daher stehen unterschiedliche Methoden der Positionserfassung von Instrumenten im Patienten, von Patienten in Bildgebungsgeräten und physiologisch bedingter Patientenbewegung im Forschungsfokus. Auf Basis der Erkenntnisse über die unterschiedlichen Trackingmodalitäten, werden die Bildgebungsmodalitäten und die Instrumente hinsichtlich Ihrer Eignung zur Kombination mit diesen Geräten evaluiert. Über die direkte und automatische Positionierung der Bildgebung und Instrumente hinaus, können derartige externe Trackingsystem während des Eingriffs und der Bildgebung für die Erfassung physiologischer Parameter genutzt werden.

Projekt im Forschungsportal ansehen

Euro-BioImaging Forschungsinfrastruktur für bildgebende Verfahren in Biologie und Biomedizin (Preparatory Phase); EC Grant Agreement No. 262023
Laufzeit: 01.12.2010 bis 31.05.2014

Euro-BioImaging - Forschungsinfrastruktur für bildgebende Verfahren in Biologie und BiomedizinEuro-BioImaging (www.eurobioimaging.eu) ist ein europaweites Projekt zum Aufbau einer grenzüberschreitenden Forschungsinfrastruktur in dem Bereich der biologischen und biomedizinischen Bildgebung und ist eingeliedert in die European Strategic Forum on Research Infrastructures (ESFRI) Roadmap (http://ec.europa.eu/research/infrastructures/).Das Euro-BioImaging-Projekt hat das Ziel, eine dezentralisierte biologische und biomedizinische Infrastruktur für Bildgebung in Europa zum Einsatz zu bringen. Euro-BioImaging soll jedem Forscher in Europa Zugang zu modernsten bildgebenden Verfahren der Biologie und Biomedizin ermöglichen. Die Euro-Bioimaging-Infrastruktur integriert damit die Expertise der europäischen Wissenschaftsgemeinschaft zur Förderung der Entwicklung und Anwendung der notwendigen Technologien. Dabei beinhaltet das Gebiet der innovativen medizinischen Bildgebung sowohl die Ultrahochfeld-Magnetresonanztomografie, Phasenkontrast-Röntgenbildgebung, sowie weitere Verfahren zur bildgebenden Diagnostik. Durch die Möglichkeit des Zugangs zu bildgebenden Verfahren und der Ausbildung sowie der gemeinsamen Nutzung der Bilddaten wird Euro-BioImaging die europäische Innovationsforschung auf dem Gebiet der biologischen und medizinischen Bildgebung vorantreiben.

Projekt im Forschungsportal ansehen

STIMULATE -> Bildgebung
Laufzeit: 01.03.2013 bis 28.02.2014

In der Planung, Durchführung und Kontrolle minimal-invasiver Eingriffe werden unterschiedliche Bildgebungsmodalitäten wiederholt genutzt. Die Überlagerung der Bilddaten ist jedoch oft nur eingeschränkt oder durch nachträgliche Registrierung möglich.

In STIMULATE werden im Projekt "Bildgebung" Möglichkeiten zur weiteren Verbesserung der Modalitäten für den Einsatz zur Planung und Durchführung von bildgestützten minimal-invasiven Eingriffen in Machbarkeitsstudien evaluiert. Hierbei werden innovative Ansätze für die Darstellung mittels 3D-roboterbasierter Angiographie und der Kernspintomographie, neuartige Photonendetektoren und intravaskuläre Bildgebung untersucht, um langfristige Forschungsprogramme in der Hauptphase zu definieren. Im Fokus stehen z.B. Möglichkeiten zur Verbesserung der Bildqualität, zur Verkürzung der Messzeit und Reduktion der Patientendosis sowie zur Erhöhung der Sicherheit des Arbeitsbereiches und der Nutzerfreundlichkeit.

Projekt im Forschungsportal ansehen

Untersuchung glutamaterger Störungen bei depressiven Patienten anhand STEAM MRS im Hochmagnetfeld
Laufzeit: 01.06.2010 bis 31.03.2013

Advances in Magnetic Resonance (MR) neuroimaging tools have greatly contributed to recent developments in the understanding of biological processes in psychiatric diseases such as Major Depressive Disorder. Using functional MRI (fMRI), a subset of specific brain regions that experience characteristic alterations of brain responses during well-delineated psychological conditions have been identified. While some consistencies were found with structural MR assessments and postmortem studies, the molecular basis of these alterations is largely unknown. This is due, primarily, to the inherent technical difficulties encountered in the leading non-invasive imaging technique available: Magnetic Resonance Spectroscopy (MRS). In animal models, and postmortem studies in humans, deficiencies in specific cellular targets within the glutamatergic system, e.g. the glial glutamate re-uptake from the synaptic cleft and its subsequent conversion to glutamine, have been reported. Such glutamatergic origins of dysfunction are further supported by pharmacological evidence of the beneficial effects of glutamate-modulating agents in depression, suggesting treatment-related changes of metabolite levels in a subset of regions. Further systematic investigations in psychiatric neuroimaging studies are primarily hindered by technical limitations resulting in an inability to discern glutamate and glutamine in MR-spectra at field strengths of up to 3 Tesla. Recent single-voxel solutions to circumvent the lack of sufficient line separation resulted in relatively large voxels that had to be measured for up to 20 minutes to obtain reliable metabolite separation. Studies to date were thus unable to systematically investigate brain regions with adequate resolution given the functional heterogeneity of key brain regions known from functional imaging studies. The long acquisition duration for each location further prevented investigations of regional specificity via assessments of a greater numbers of regions. Our project thus aims to develop an optimized MRS method to accomplish these goals using a STEAM-based sequence at ultra high field strength of 7 Tesla.

Projekt im Forschungsportal ansehen

Bildgebung neurologischer Erkrankungen durch Erforschung innovativer Hochfeld-MR-Techniken und Kontrasophore (INUMAC)
Laufzeit: 01.01.2008 bis 31.12.2012

In diesem Projekt werden neuartige Technologien und Methoden für die Magnetresonanztomographie bei hohen Feldstärken entwickelt. Die Universität Magdeburg ist als Unterauftragnehmer für die Universität Freiburg und die Fa. Siemens Medical Systems tätig und wird Verfahren für die adaptive Bildgebung sowie die homogene HF-Anregung bei sehr hohen Frequenzen entwickeln und testen. SIEMENS bearbeitet ein Forschungs- und Entwicklungsvorhaben mit dem Thema "Bildgebung neurologischer Erkrankungen durch Erforschung innovativer Hochfeld-MR-Technikern und Kontrastophore (INUMAC)", welches vom Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) mit einer Zuwendung gefördert wird. Das geförderte Vorhaben enthält unter anderem ein Teilvorhaben mit dem Titel "Erforschung fortschrittlicher MR Bildgebungs-Verfahren und Anwendungen". Der Auftragnehmer ist bereit, im Auftrag von SIEMENS die methodische und Applikationsentwicklung, Optimierungen, Tests und Pilot Studien in den F&E-Arbeiten in drei Teilvorhabensbereichen: 1) Parallel Excitation/Transmit Sense ("PEX"), 2) Räumliche Codierung basierend auf  Parallelen Lokal Gradienten ("PatLoc"), 3) Real-Time Scanner Control  ("RT Scan") bei einer Feldstärke von 7 Tesla zu übernehmen.

Projekt im Forschungsportal ansehen

Verknüpfung der mikro- und makroskopischen Welten: Systematische Studie des Wasser-Makromolekül-Austausches als Basis des Ultra-Hochfeld-MRT Phasenkontrastes, CBBS
Laufzeit: 01.10.2008 bis 31.12.2012

Das Projekt verbindet den mikroskopischen Wasser-Makromolekül (WM)-Austausch mit dem makroskopischen MRT Phasenkontrast, der mit Hilfe des 7-T MRT Systems im menschlichen Hirn entdeckt wurde. Als Grundlage für die weitere Entwicklung wird zunächst der WM-Austausch unter kontrollierten experimentellen Bedingungen mittels hochauflösender NMR-Spektroskopie charakterisiert. Unterschiedliche Makromolekül-Parameter, wie Molekülgröße, Molekulargewicht, Temperatur, pH-Wert, Viskosität, Ionenstärke etc. werden dabei berücksichtigt. Dies wird erweitert auf strukturelle Faktoren (Protein-Bestandteile, ?-Helix und ?-Blatt Bestandteile etc), die eng mit der Proteinkonfirmation verbunden sind. Proteinaufspaltung und 2D/3D NMR-Spektroskopie werden dabei genutzt, um Korrelationen zwischen strukturellen Faktoren und dem WM-Austausch-Effekt zu erforschen.Zur Erweiterung des WM-Austausch-Modells auf in vivo Quantifizierung ist eine qualifizierte Kenntnis der Makromolekül-Bestandteile in Hirn-Gewebe und deren Einfluss auf den Phasenkontrast nötig. Dazu werden systematische Untersuchungen an Gewebe-Extrakten von Mäuse-Hirnen aus unterschiedlichen Regionen (Cortex, Cerebellum, Striatum, Hippocampus, Thalamus, etc) und mit unterschiedlichen Zellbestandteilen, inkl. Zytosol, Myelin, Zellmembran und synaptischer Bestandteile gemacht. Die Makromolekülverteilung wird mit der in vivo Phasenbildgebung in Verbindung gebracht und Magnetisierungstransfer-Studien der gleichen Mäuse sollen quantitative Aussagen des Zusammenhangs möglich machen. Dies wird mit dem EAE Maus-Modell (Experimental Autoimmune Encephalomyelitis) untersucht, um multiple Sklerose (MS) näher zu untersuchen. Ein detailliertes Wissen über den WM-Austausch-Effekt und den in vivo Phasenkontrast aus den Tier-Studien bildet die Grundlage für eine quantitative Phasenbildgebungs-Studie mit MS Patienten.  Das Projekt bearbeitet folgende wissenschaftliche Fragestellungen: i. Wie wechselwirken Makromoleküle mit Wasser?ii. Ist es möglich, dynamische Konfirmationsänderungen von Proteinen mit Hilfe des WM-Austausch-Effektes zu beobachten?iii. Wie lässt sich die in vivo Makromolekülverteilung und deren Beitrag zum WM-Austausch-Effekt in der MRT-Phasenbildgebung bemessen? iv. Wie kann das WM-Austausch-Modell unter Einbeziehung von Makromolekül-Veränderung zur quantitativen Untersuchung von in vivo Pathologien genutzt werden?  Dieses Projekt basiert auf enger Zusammenarbeit zwischen der Abteilung für Biomedizinische Magnetresonanz, dem Institut für Chemie, der Abteilung Neurologie II der Otto-von-Guericke-Universität Magdeburg und dem Leibniz-Institut für Neurobiologie (LIN).

Projekt im Forschungsportal ansehen

Entwicklung von Hochfrequenzspulen für 7T Magnetresonanztomographie
Laufzeit: 01.10.2008 bis 31.03.2012

Die Bildqualität in der Magnetresonanztomographie wird u.a. durch die Stärke und Homogenität des messbaren NMR-Signals bestimmt. Mit der Einführung des 7T MRT hat hier eine neue Ära begonnen, mit Magdeburg als Vorreiter. Das Potential dieses Ultrahochfeldgerätes (UHF) kann derzeit noch nicht voll ausgeschöpft werden, da die Hochfrequenz-Sende- und -Empfangstechnik optimiert werden muss. Hierzu werden spezielle Spulenkonfigurationen wie etwa Phase-Array-Spulen benötigt, welche derzeit nur für den Kopfbereich und von nur einer Firma kommerziell angeboten werden. Die Etablierung von HF-Kompetenz und die Entwicklung optimaler Spulen ist das Ziel des Antrages. Die erworbenen Kenntnisse und technischen Fähigkeiten sollen sekundär in Kooperationen mit der Wirtschaft und anderen Instituten weiterentwickelt und vermarktet werden. Das Projekt fügt sich harmonisch in den Schwerpunkt Biophysik und weiche Materie der FNW ein und kann als fakultätsübergreifender Kristallisationspunkt für die Initiativen im Bereich Medizintechnik gesehen werden.

Projekt im Forschungsportal ansehen

Imaging of Neuro Disease Using High Field MR and Contrastophors (INUMAC)
Laufzeit: 01.01.2009 bis 31.10.2011

The major goals of this project are to develop new technology to overcome the limitations of ultra high field imaging in humans (higher than 7 Tesla). The project consortium consists of University Freiburg, Siemens Medical Systems, and Bruker Biospin. The University Magdeburg is sub-contractor to the University Freiburg and Siemens Medical Systems and involved in the development of methods for real-time scanner control and parallel transmission.

Projekt im Forschungsportal ansehen

Neue Methoden für die Ultrahochfeld Magnetresonanztomographie - Preis für Angewandte Forschung
Laufzeit: 01.01.2008 bis 31.12.2010

Preisgeld für den Preis für Angewandte Forschung in Sachsen-Anhalt 2007, zur Förderung von Wissenschaft und Forschung.

Projekt im Forschungsportal ansehen

Teilprojekt A3 des SFB 779/1: Perzeptuelles Verstärkungslernen: Der Beitrag neuronaler Fehlersignale zur visuellen Mustererkennung
Laufzeit: 01.01.2008 bis 31.12.2010

Menschliche visuelle Mustererkennung unterliegt einer erheblichen Plastizität: Wenn Probanden über längere Zeit trainieren, einfache Reizmuster zu unterscheiden, dann können sie die Präzision ihrer Antworten erheblich verbessern, solange Trainings- und Testbedingungen sehr ähnlich sind. Die genauen Mechanismen dieser hochselektiven Verbesserung visueller Mustererkennung sind bis heute nicht geklärt.

In diesem Projket wird untersucht, wie der Aufbau perzeptueller Kompetenzen im visuellen System durch sog. Fehlersignale unterstützt wird. Fehlersignale resultieren aus Interaktionen der Basalganglien und des präfrontalen Kortex und indizieren Differenzen zwischen erwarten und tatsächlichen Ereignissen. Diese Differenzen werden als Belohnung / Bestrafung oder, abstrakter, als Erfolg / Misserfolg kodiert und sind Bestandteil des Systems des Verstärkungslernens, das diese Feedback-Inforation verwendet, um Verhalten in Bezug auf das gewählte Ziel zu optimieren. Die hier geplanten Studien haben das Ziel, neutrale Mechanismen von perzeptuellem Lernen durch Fehlersignale zu identifizieren. Dabei kommen neue MR Verfahren (Anwendung von statistischer Mustererkennung auf hochauflösende 3T und 7T fMRT-Daten) und eine Kombination multimodaler räumlich-zeitlicher Parameter zum Einsatz.

Projekt im Forschungsportal ansehen

Deutsch-Chinesisches Seminar zur Hochfeld-Magnetresonanz im Rahmen des Deutsch-Chinesischen Jahres der Wissenschaft und Bildung 2009/2010
Laufzeit: 01.01.2010 bis 30.06.2010

Motivation für die Durchführung díeses Treffens von Wissenschaftlern auch China und Deutschland von Forschungsstätten mit Hochfeld-Magnetresonanztomographie (MRT) ist die Etablierung von Hochfeld (7T) Tier-MRT und die Errichtung des ersten 7T-Human-MRT in China. Zudem befindet sich in Deutschland die größte Forschungsgemeinschaft im Bereich der Hochfeld-MRT außerhalb der USA und in Magdeburg wurde 2005 der erste 7T-Human-MRT in Europa in Betrieb genommen.

Projekt im Forschungsportal ansehen

Adaptive distortion correction techniques for high-field magnetic resonance neuroimaging
Laufzeit: 01.11.2007 bis 28.02.2010

In diesem Projekt werden Methoden für die dynamische Erfassung von Magnetfeldverteilungen während einer MRT Messung entwickelt. Anhand dieser werden die bei EPI entstehenden geometrischen Verzerrungen korrigiert und somit die Vergleichabrkeit mit anatomischen Aufnahmen erhöht (Details siehe engl. Zusammenfassung).

Projekt im Forschungsportal ansehen

Faster than BOLD: New Concepts and Applications for the Examination of Spatiotemporal Mechanisms of Brain Activity
Laufzeit: 01.09.2004 bis 31.08.2007

Neue Methoden zur Untersuchung der neuronalen Aktivierung mittels Magnetresonanztomographie werden in idesem von der Hertie-Stiftung geförderten Projekt entwickelt und untersucht. Das gängige Messverfahren beruht auf dem BOLD Effekt, welcher relativ langsam (1s) einen indirekten Effekt der Gehirnaktivität misst. Neue Verfahren sollen eine direktere und schnellere Messung erlauben.

Projekt im Forschungsportal ansehen

Hocheffiziente 31P spektrokopische Bildgebung mittels SSFP
Laufzeit: 01.04.2005 bis 31.08.2007

31P-Spektroskopie ist von höchstem Interesse, da viele entscheidende Metaboliten des Zellstoffwechsels MR-sichtbare Moleküle sind, welche Phosphor enthalten. Pathologische Veränderung des Zellstoffwechsels, wie etwa durch ischämische Ereignisse hervorgerufen, können mittels 31P-Spektroskopie detektiert, beurteilt und in ihrem Verlauf oder während Therapie verfolgt werden. Hierzu gehören unter anderem Pathologien, die durch Gefäßerkrankungen hervorgerufen werden, wie etwa Schlaganfälle des Gehirns, Herzinfarkte oder aufgrund peripherer Gefäßerkrankungen minderdurchblutete Muskelgruppen. Die MR-spektroskopische Messung der 31P-Metaboliten ist jedoch aufgrund ihrer geringen Konzentration und Sensitivität im Vergleich zur Protonenbildgebung sehr zeitaufwendig. Durch die Kombination von hohen statischen Magnetfeldern mit effizienten und schnellen Verfahren zur Signalgenerierung und Bildaufnahme aus der 1H-Bildgebung können spektroskopische 31P-Aufnahmen in für die klinische Anwendung akzeptablen Zeiten durchgeführt werden. Hierzu soll in diesem Projekt das neu entwickelte und vorgestellte Verfahren des 31P-SSFP CSI bis zur klinischen Anwendbarkeit weiterentwickelt und an Patientengruppen mit verschiedenen Pathologien eingesetzt werden. Neben dieser Entwicklung und Erprobung der statischen Bildgebung soll auch untersucht werden, inwieweit die Methode sich zur direkten Visualisierung der lokalen metabolischen Transferrate von Phosphokreatin mittels Magnetization Transfer Imaging einsetzen lässt.

Projekt im Forschungsportal ansehen

Letzte Änderung: 04.04.2023 - Ansprechpartner: